應用于彩色顯示器的有機發光器件(OLED)具有優秀的圖象質量,特別是在亮度以及對比度等方面。近十年來,對OLED的研究得到廣泛的關注,對未來的圖象顯示技術帶來無法估量的沖擊。OLED器件的性能與空穴注入過程有非常密切的關系,通過使用錫摻雜氧化銦(ITO)做OLED的陽極。
固體表面的結構和組成都與內部不同,處于表面的原子或離子表現為配位上的不飽和性,這是由于形成固體表面時被切斷的化學鍵造成的。正是由于這一原因,固體表面極易吸附外來原子,使表面產生污染。因環境空氣中存在大量水份,所以水是固體表面最常見的污染物。由于金屬氧化物表面被切斷的化學鍵為離子鍵或強極性鍵,易與極性很強的水分子結合,因此,絕大多數金屬氧化物的清潔表面,都是被水吸附污染了的。
等離子體通常使用右圖所示的設備進行工作。將基片放在底座上,在真空系統中通入不同的混合氣體,并在金屬電極上家射頻電壓將氣體電離,形成等離子體,以非??斓乃俣绒Z擊ITO基片。為了形成較均勻的電場,電極采用金屬柵網結構。等離子體的作用通常是改變表面粗糙度和提高功函數。研究發現,等離子作用對表面粗糙度的影響不大,只能使ITO的均方根粗糙度從1.8nm降到1.6nm,但對功函數的影響卻較大。
用等離子體處理提高功函數的方法也不盡相同。氧等離子處理是通過補充ITO表面的氧空位來提高表面氧含量的。氧同表面有機污染物反應生成CO2和H2O,去除了表面有機污染物。SF6通過在ITO表面形成一層含氟層來提高表面功函數,對粗糙度的改變不明顯。Ar等離子處理是通過除區在裝載基片過程中吸附的氧來清潔ITO表面的。
OLED封裝工藝直接影響OLED產品的成品率,而封裝工藝中出現問題的罪魁禍首99%來源于芯片與基板上的顆粒污染物、氧化物及環氧樹脂等污染物,如何去除這些污染物一直是人們關注的問題,等離子清洗作為最近幾年發展起來的清洗工藝為這些問題提供了經濟有效且無環境污染的解決方案。針對這些不同污染物并根據基板及芯片材料的不同,采用不同的清洗工藝可以得到理想的效果,但是錯誤的工藝使用則可能會導致產品報廢,例如銀材料的芯片采用氧等離子工藝則會被氧化發黑甚至報廢。所以選擇合適的等離子清洗工藝在OLED封裝中是非常重要的,而熟知等離子清洗原理更是重中之重。
一般情況下,顆粒污染物及氧化物采用5%H2+95%Ar的混合氣體進行等離子清洗,鍍金材料芯片可以采用氧等離子體去除有機物,而銀材料芯片則不可以。選擇合適的等離子清洗工藝在OLED封裝中的應用大致分為以下幾個方面。